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Abstract 

An extended version of Strutinsky's macro~microscopic 

method is used to calculate effective potential energies for 

rotating, excited heavy compound nuclei undergoing fission. 

Nuclear deformation is parameterized in terms of Lawrence's 

family of shapes. A two~center single~particle potential 

corresponding to these shapes is employed, with BCS pairing 

added. Statistical excitation is introduced by temperature~ 

dependent occupation of (quasi-) particle energy levels. We 

calculate shell corrections to the energy, the free energy and 

the entropy as functions of deformation and temperature. The 

associated average quantities are derived from a temperature-

dependent liquid drop model. The resulting static deformation 

energy is augmented by the rotational energy to yield the 

isothermal effective potential energy as a function of 

deformation, temperature and angular momentum. Moments of 

inertia are obtained from the adiabatic cranking model with 

temperature-dependent pairing included. 

We have also calculated the effective potential for 

constant entropy rather than constant temperature. Although this 

isentropic process physically is more appropriate than the 

isothermal ocess, it has not been treated before. For the same 

amount of excitation energy in the spherical state of the 

compound nucleus, the isentropic barriers turn out higher than 

the isothermal ones. For both processes we have extracted the 

critical angular momentum (defined as the one for which the 

barrier approximately vanishes) as a function of excitation. 

Our model is applied to the superheavy nuclei 
270

110, 
278

110, 

298 292 322 . . 114, 118 and 128, which have been tried to form 

in krypton and argon induced heavy ion reactions. 



L Intr tion 

The increasing availability of heavy ion beams in recent 

years has stimulated experimental studies of collective motions 

of very heavy nuclear systems with large amounts of angular 

momentum that were inaccessible before. The natural first step 

towards a theoretical description of such systems is to gain a 

quantitative understanding of the behaviour of a compound nucleus 

with respect to its shape and rotational degrees of freedom as 

functions of the excitation energy and the angular momentum. 

A detailed knowledge of these properties is required in 

order to describe e.g. the fission of a rotating heavy nucleus 

or the fusion versus fission competition in a composite formed 

by colliding heavy ions. In particular, the chance to reach via 

a heavy ion reaction the island of relatively stable superheavy 

nuclei predicted by theory depends critically on how much exci~ 

tation and angular momentum such nuclei can tolerate before they 

fission too quickly to be detected. 

Whereas the potential energies of deformation for 

nonrotating cold nuclei have been mapped extensively in a variety 

of models, much less is known about the rotating, excited 

nucleus. Only for the case of a classical liquid drop with rigid~ 

body moment of inertia and no excitation, a fairly complete 

survey has been given by Cohen, Plasil and Swiatecki1 ). It is 

well known, however, that shell effects play an important role 

in heavy nuclei and form the very basis for the conjectured 

existence of superheavy nuclei. Further, we know from low~energy 

rotational spectra that the nuclear moment of inertia is 



considerably smaller (due to pairing) than the rigid-body value. 

In any realistic description a rota ng nucleus at least these 

features must be incorporated. 

The macro-microscopic method due to Strutinsky
2

) is 

obviously the next level of sophistication to be considered. 

This method has been widely and successfully used to calculate 

deformation energies for nonrotating cold nuclei, see e.g. 

ref. 
3
). It was combined by Jensen and Damgaard 4 ) with the 

statistical model 5) of excitation, including pairing. On the 

other hand, Strutinsky's shell correction method has been applied 

to calculate effective potential energ s of rotating cold nuclei 

by various groups
6

-
9

) of authors. Mustafa and Kumar
6

) 

reported on results for 
240

Pu and 
298

114, using a two-center 

shell model with pairing and treating rotation in the adiabatic 

7-9 
limit. These effects were accounted for in refs. ) , but here 

pairing was excluded. 
0 7 

Neergard et al. ) used a triaxial 

harmonic oscillator potential without spin-orbit coupling or 

other corrections to compute equilibrium deformations of rare-

8 
earth nuclei as a function of angular momentum. The Lund group ) 

employed the same potential with these corrections included. 

They obtained maps of the effective potential for a range of 

rare earth and lighter nuclei as well as for Z = 114. In a 

similar way, the Julich group9 ) investigated the fission 

instability of a series of nuclei using a deformed Woods-Saxon 

potential. Both, rotation and excitation, were considered by 

Ignatyuk et al. 10), who calculated spherical energies and level 

densities for heavy nuclei with pairing excluded. 
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The purpose of this paper is to study rotating hot nuclei 

by treating (statistical) excitation, rota on and iring 

simultaneously. In the next section we state our model and the 

general physical assumptions made. In sect. 3 we give explicit 

expressions for the statistical quantities and the moment of 

inertia. Shell corrections to the former quantities are derived 

in sect. 4. The corresponding average quantities required in 

the macro-microscopic approach are taken from a liquid-drop model 

including excitation greater consistency. As this consti-

tutes a new element within the Strutinsky method, we discuss the 

properties of the excited liquid drop in detail in sect. 5. 

While sects. 3-5 do not refer to a particular parameterization 

of the nuclear shape or the associated single-particle 

Hamiltonian, we specify our choice of these in sect. 6. In the 

last section we present and discuss our numerical results for 

five superheavy systems and compare them to previous calculations 

where available. 

2 General model assu ions 

2.1. DEFORMATION 

In the macro-microscopic approach, one uses classical 

parameters describing the shape and orientation of the nucleus. 

For computational reasons the number of these parameters must be 

as small as possible. We assume axial symmetry and reflexion 

symmetry about the equatorial plane. Nuclear shapes are 

specified by two deformation parameters (elongation and 

constriction) covering deformed ground states and symmetric 

fission shapes. This means we have sacrificed triaxiality, which 



is important for (cold) medium-heavy nuclei and which has been 

treated in refs. 7 '
8

) in lieu of constriction (necking-in). 

Judging om re • 
8

'
11

) we expect, however, that triaxiality 

is less relevant for the excited superheavy systems considered 

in th paper. For such systems, also the mass asymmetry degree 

of freedom neglected here plays a minor role
3

'
12

). Details of 

the shape parameterization are given in sect. 6. 

2. 2 ROTATION 

In a nucleus, rotation is a complicated interplay between 

collective and intrinsic degrees of freedom. The intrinsic 

states are affected by the collective centrifugal and Coriolis 

forces. In particular, the latter force acts with opposite signs 

on the two nucleons in a paired state (Coriolis anti-pairing 

effect, CAP). The nucleus like any asymmetric top rotates about 

an axis which, in general, does not coincide with one of its 

principal axes. The precession or wobbling, cf. ref. 8), may 

cause intrinsic excitation. 

For simplicity, we neglect intrinsic angular momentum and 

further assume that the nucleus rotates about the principal axis 

having the largest moment of inertia, namely the one perpendicu-

lar to the axis of symmetry. We treat this collective rotation 

in the adiabatic limit (for practical reasons), i.e. we assume 

that the effective potential energy for a cold nucleus without 

pairing can be written as the sum of intrinsic and rotational 

energies: 

[ (del, r) '--f. J (rid··.].. 
\ iJ-- '-!i-ll {} 

t,t 1 (I-~1) 

2_ ICM/cJr..f) 
"'"' 

( 1) 



As the superscript indicates, we employ the adiabatic cranking 
eM 

model (CM) expression r~ r the moment of inertia. The adia-

baticity assumption a implies that the intrinsic energy E;.,-r: 

is only a function of deformation, but not of the angular 

momentum 1~ . This approximation becomes less important the more 

the nucleus is excited, because the maximum I it can tolerate 

decreases with increasing excitation. 

When BCS pairing is included, E:"f' 
CM 

and ej_ depend also on 

the gap parameters ~ .. and tp for neutrons and protons. Due to 

the assumption of adiabaticity, the CAP effect is not directly 

accessible in our approach, but we approximate it by a 

prescription discussed in Appendix Al. For the case of a finite 

intrinsic angular momentum component M along the symmetry axis, 

the CAP effect has been studied by Moretto
5

) • 

2.3 EXCITATION 

Since we want to describe the excitation of a compound 

system we assume its intrinsic degrees of freedom to be in 

thermal equilibrium characterized by a temperature T. This holds 

if the intrinsic relaxation time is smaller than the fission 

lifetime. Support for intrinsic equilibration is provided by 

studies of strongly damped collisions
13

) which dominate the 

reaction cross section for very heavy ions and seem to proceed 

on a shorter time scale than fusion-fission. Recent measurements 

of the energy spectra of neutrons evaporated from the reaction 

partners13 a) show that both fragments have the same temperature. 

Also, in a number of promising theoretical models
14

) for such 

damped collisions, the intrinsic states have been treated statis-

tically; sometimes the existence of a temperature is assumed. 



Hence it seems justified to assume that true compound fission of 

a superheavy nucleus proceeds in thermal equilibrium. 

With the assumptions made above, we can gener ize eq. 

(1) and write the effective potential of a rotating heated 

nucleus in the macro-microscopic approach as 

(I+ J) 

( 2) 

The first term is the energy of a heated liquid drop as discussed 

in sect. 5. Strutinsky 1 s shell correction including a 

temperature-dependent pairing gap ~(T) is the second term. In 

the rotational energy (last term), the moment of inertia also 

includes temperature and pairing effects. Explicit expressions 

will be given in the two subsequent sections. The quantitites 

[F and e5._11 
are evaluated separately for neutrons and protons and 

are then added. 

2.4 ISOTHERMAL VERSUS ISENTROPIC PROCESSES 

In thermodynamics, the pressure p of a 

volume V is given by the well-known relations 

-vv 

tern having 

( 3) 

here, F~f-TS is the free energy and 5 denotes the entropy. The 

first relation defines p, while the second is the equation of 

state (when F is known explicitly). Similarly, in a rotating 

heated nucleus the force in deformation space can be expressed by 



( 4) 

To make use of these r tions, one has to specify a 

thermodynamic process for the deforming nucleus en route to 

fission with Consf • Physically, the appropriate function is 

not known and we must therefore resort to assumptions. 

The isothermal process 1~ Conrt has usually been assumed 

in previous studies, because it is computationally the easiest 

to handle. In view of eq. (4), we stress that in this case the 

free energy 

( 5) 

is the associated effective potential rather than E(J.cLI,T) 

which has often been used in the literature. Since usually only 

the deformation-dependent parts of the potentials are of 

interest, we infer from the last equation that F and E are 

equivalent in this respect only if S does not depend on 

deformation. In general, this condition is not fulfilled. 

To keep T constant, heat energy must be delivered to or 

by the intrinsic system while the nucleus deforms. Th can 

occur, for instance, when part of the collective kinetic energy 

is dissipated during rapid motion. In the adiabatic limit, 

however, T~(ons.f implies the assumption of a (non-existent) 

thermal reservoir. Hence we conclude that the isentropic 



process .S =- Cohsf is the more real is tic assumption in the adiabatic 

limit. In this case, we see from eq. (4) that £(cle411.,S) is the 

associated effective potential. To illustrate the differences 

between isothermal and isentropic processes, numerical 

comparisons w 1 be given in sect. 7. 

In order to calculate Hcl.i./11 11) and E(chj 1 1,.s) , the 

entropy S(cfe~ 1 T) must be known. We use a macro-microscopic 

express ion analogous to £?, namely 

the constituents of which will be derived further below. As a 

( 6) 

consequence of the adiabaticity assumption, 5 does not depend on 

I, provided the entropy created by rotation can be neglected. 

Inserting eqs. (2,6) into eq. (5), we arrive at the effective 

potential for the isothermal process: 

( 7) 

To describe the isentropic ocess, eq. (6) must be solved 

(numer ally) for T(c<-d 1S). Inserting this into eq. (2), we get 

the isentropic effective potential 

or explicitly 



( 8) 

An example for the determination of the temperature in an 

isentropic process is provided by Fig. 1. The entropy increases 

almost linearly with temperature constant mation. It 

can be seen that the difference between the isentropic and iso-

thermal processes is most pronounced for moderate temperatures 

about 0.5 •.. 1 MeV. At higher excitations, the entropy changes 

little with deformation but the isentropic temperature is 

systematically higher than the spherical one. 

3. Temperature-dependent BCS model 

3.1. INTRINSIC STATISTICAL QUANTITIES 

In the following we give explicit expressions for various 

quantities entering the shell corrections. We start om the 

well-known BCS Hamiltonian with constant pairing strength Gl, 

written in second quantization form: 

( 9) 

Here, ~=±1,±2r·- labels the quantum numbers of the single

particle states /!)with energy E~~f-!, the state /-~)being the 

time reverse of 1~/. For the s.p. Hamiltonian to be specified 

in sect. 6, the states depend on deformation and I-!), 1-~.) have 

opposite ojections of the s.p. angular momentum along the 

symmetry axis. Though not explicitly indicated, the pairing 



~11~ 

force is allowed to act only in an energy interval around the 

Fermi level; otherwise Gl:::.ronst would be a meaningless 

approx i rna tion. 

To introduce thermal excitation, we employ the grand 

canonical for mal ism, following refs. 4 ' 5) . In principle, the 

s.p. states /4-.) depend on temperature, but this effect can 

safely be neglectedlS). With some approximations, the grand 

potential~ for one type of nucleons (neutrons or protons) 

, II \3CS 
result1ng from n can be expressed as 

( 10} 

Here, 1 is the grand tition function and the temperature T. is 

measured in energy units. Quasi-particle energies are denoted 

The gap parameter uCT) and the chemical 

potential \{T) are determined by the coupled gap and particle 

number conservation equations 

J(=. A/ O'"f 2 

2 c: .1 tC<htt 
[_ .f<_ 

:... L -
rn .fL/t> C'.fl_ 21 

(11) 



In the grand ensemble, the following general expressions 

hold for the average particle number, energy, entropy and free 

energy: 

<.Jilt c::. - #.JL 
v ~ 

( 12) 

Inserting .iL from eq. (10) we obtain the explicit forms 

i 

( 13) 



Though not shown explicitly, all quantities on the right (except 

I) depend on deformation. In the limit T=O, {j,:cO, the energy 

becomes the sum of the fa. over occupied states, while S-=-f:J-::-0 and 

f~E. When G, is finite and T is increased, 6(T) decreases mono-

tonically until the pairing correlation vanishes at a critical 

temperature l;,.,-1 z(OJ .. -1)M.eV, see e.g. 
5 

ref. ) for further 

details. An example of this phase transition is given in Fig. 2. 

3.2 CRANKING-MODEL MOMENT OF INERTIA 

When a Hartree-Fock Hamiltonian is cranked adiabatically 

about the i-th body-fixed axis of the nucleus with angular 

velocity G..J; , one defines the moment of inertia as 

(11 n ·. 
CJ. 

r 

Here ~ is the i-th component of the total angular momentum 

( 14) 

t d h (•) opera or an the di erence of the s.p. density operators 

for &..1; :to and CJ;:::.O • The resulting well-known Inglis express ion 

can be generalized to include temperature-dependent pairing. In 

good approximation, the moment of inertia can be written as 3 ,lG) 

( 15) 



-0 
Here U-IL and 'J.fi. are the usual BCS amplitudes and 1~: is the i-th 

component of the s.p. angular momentum operator. We repeated 

the explicit expression (15) here because it was misprinted in 

both references quoted above. 

4. Strutinsky renormalization 

4.1. SHELL CORRECTIONS TO INTRINSIC QUANTITIES 

Following ref. 
4

) we define the shell-plus-pairing 

correction to the intrinsic energy for T~o and for one type of 

nucleons as 

( 16) 

The second term is the smooth energy 

( 17) 

obtained from eq. (11) by averaging over an energy interval ( 

(of the order of a major shell spacing) with the smoothed level 

density 

( 18) 

The curvature correction function ~ in this expression is given 

explicitly in Appendix A2. The smooth quasi-particle energy in 

eq. (17) is defined as '&.E)=-[U.-1\/·+0/] 11
''- Further, the 
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chemical potential )\(T) and the gap ll(T) are determined by the 

smoothed versions of eqs. (11). Since the numerical solution of 

these coupled integral equations each deformation is rather 

time consuming, we use instead of eq. (16) the approxi rna tion 

( 19) 

We have numerically estimated that the resulting error should be 

negligible, aside from a constant shift, which is independent of 

deformation and therefore irrelevant because we are only 

interested in the deformation energy. Thus we have to solve only 

eqs. ( 11) for '?\(f) , (j (T) and the smoothed particle number 

equation yielding ')( Cr) with /}:. 0 fixed. 

We further define the shell correction to the entropy 

and to the free energy 

(V "" 

Here, s; is the smooth entropy defined analogously to E • Some 

( 20) 

details as to the numerical calculation of the shell corrections 

using a Sommerfeld expansion are given in Appendix A.2. 



-16-

4.2 SHOULD ONE RENORMALIZE THE MOMENT OF INERTIA? 

In the spirit of the macro-microscopic approach it would 
r-J 

seem natural to define a smooth moment of inertiae and a shell 

C(l 17) correction oct [cf. ref. ] • The problem, however, is that no 
,v 

classical expression for e is known which would reproduce on the 

average the experimental values found in low-energy spectroscopy. 

. 18) . . 9RS ., 8 np . As 1s well known , the r1g1d-body moment ~L , wh1le 

e iF • n exf' 
the irrotational flow value underestimates o by about a 

factor of 5. Whereas irrotational flow is obviously an unreal-

istic assumption, the ilure 8 RB is due to the pairing 

eii.B 
interaction, because seems to be a good approximation when 

pairing has vanished at large excitation and/or angular momentum. 

On the other hand, the cranking value ecM with pairing 
1"'\e><p 

included underestimates ~ only by about 10-20%, see e.g. 

ref. 18
). Further, the necessity to renormalize ecM is less 

obvious than in the case of the deformation energy obtained by 

summation of the £.a_ (ri~p, for the following reason. The well-

known deficiencies of the latter method arise because the usual 

prescription (namely, keeping the volume of the equipotential 

surfaces of the s.p. potential constant under deformation) 

simulates only inadequately the constancy of the density volume. 

In contrast, eCN depends essentially on differences of the£~. 

This is easily seen in the limit T~~~O of eq. (15) which is the 

Inglis formula. Therefore 8CM is much less sensitive to any 

unreal is tic behaviour of £-fi. (clef) than the sum of the t:t and we 

use {9CH as given by eq. (15). 
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• 11 CM • h h A second problem concern1ng u ar1ses w en t e s.p. 

Hamiltonian contains momentum-dependent terms such as the {;·£

potential or the [~-correction term in Nilsson type Hamiltonians. 

nCM RB 
In this case, v exceeds 9 for sufficiently large temperatures 

(i.e. 6=0) by about 40%, see Fig. 3. This undesirable effect 

has also been observed earlier 19 ) ana is mostly due to the 

term, which is also present in our Hamiltonian. The effect of 

'L 
spin-orbit and l -terms on the perpendicular moment of inertia 

can be seen in Table 1. A corresponding renormalization has been 

8) 
proposed in ref , but we think that one should rather modify 

z 
the l -term. Since the momentum effects alter the critical 

angular momenta only by about 20% for the nuclei considered here, 

h -:! • ecM · h · we ave maue no attempt to renormal1ze 1n t 1s respect, 

either. 

5. Liquid drop model with finite temperature 

A consistent generalization of the macro microscopic 

method to include excitation requires a liquid drop model (LDM) 

describing a heated nucleus. This is because the volume and 

surface area increase with the temperature of the drop, while 

the density h (T) and the sur face tens ion <J'(T) decrease. These 

effects are not accounted for in the shell correction derived in 

the last section. We employ the T-depenaent LDM of ref. 20 ), 

which is based on a Thomas-Fermi scription 21
) of the excited 

nucleus. Essentially the same results have been obtained with a 

Hartree-Fock treatment in 22) 
ref. • For the temperature range 

Os T (- 2 MeV considered here, the following approxi rna te express ions 

. . f 20) were g1ven 1n re . 



<:;{D) h {T) ( ") X (T):: 'x (o) ----- -~ ;:_ x (o) 1 + (~-ol) T . 
G(T) h (o) 

Here X(v) is the usual fissility parameter which becomes a 

function x(T) for a heated drop. 

( 2 2) 

We start by decomposing the free energy F into its volume, 

sur ce, and Coulomb parts, respectively: 

( 23) 

For a spherical drop, this equation can also be written as 

( 24) 

which shows the meaning of the T~dependent fissility. For the 

remainder of this section, we drop the superscript LDM r 

brevity, as all quantities refer to the liquid drop. Once 

F (ci·ef 
1
T) is known explicitly, all other quanti ties of interest 

follow immediately (see below). 

The volume part ofF can be derived from Stocker's 

mode1
23

) of heated nuclear matter. In good approximation it 

is given by 



( 2 5) 

where Evol {o)::::.- (UHeV) A denotes the usual LDM volume energy. 

Note that both Fvol and Ev()l do not depend on deformation. Next 

we reca11
20

) that the surface tension is the free energy of 

the surface layer per unit area. Thus we can express the surface 

part of r as 

( 26) 

The first factor is the usual LDM surface energy proportional to 

the surface area. Further, the Coulomb part of ~is taken as 

( 

h {T)) 1/3 
c ( cf.e r T) ::_ Ec ( c( e~ o) --~-
r Co" I 1, of,{ I I vd o) 

( 2 7) 

where E(_oi.<J (d. lf 
1 

O) is the usual LDM Coulomb energy. 



Having specified F explicitly, we arrive at the free 

deformation energy for the isothermal process, normalized to 

zero for the spherical shape: 

o!eJ I ,' ) r (I I --r'> F(r I -.1 ) F uf q II :: r UU' ~I ! ) - - ._; pn I 

where the surface and Coulomb energies have been normalized 
det 

analogously. Since p>d, the isothermal LDM barrier F is 

lowered when the temperature rises. 

The entropy 5 is obtained om the thermodynamical 

relation 5(de:j,T)~- o!=(Je.LT) loT as the sum 

over volume, surface and Coulomb contributions, respectively. 

Finally, the internal energy is determined by 

( 28) 

Only for the isothermal process, 

its deformation-dependent part is given by 

( 3 0) 

As expected, the deformation energy increases with temperature. 

For the isentropic process Const within the pure LDM 

picture, the energy as function of deformation and S is also 
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needed, see sect. 2.4. This is obtained easily observing that 

eq. ( 29) can be solved analytically r T(clfj,S:} • For constant 

5, the temperature in the fissioning drop decreases because the 

dominant deformation dependence in eq. (29) comes from the 

increasing surface term. When both the isothermal and the isen-

tropic process are started in the spherical state with the same 

excitation characterized by 'T;p!, this cooling effect causes the 

isentropic barrier to rise less rapidly than the energy in eq. 

(30). Further, it will be shown that the isentropic barrier for 

finite Tsfl--, is always higher than the isothermal one. 

Lastly we note that the rigid-body moment of inertia of 

the drop is but a very weak function ofT. From the above model, 

we find 

In the temperature range D.fT~2h.eVunder consideration, e?-.g 

increases by about 1%. A similar observation
8

) has been made 

for (3 CM obtained from cranking Without pairing. 

6. Shape parameterization and single-particle Hamiltonian 

We employ the Lawrence
24

) family of symmetric fission 

shapes which has been used extensively in liquid drop fission 

calculations
25

) and connection with a s.p. potential of 

( 31) 

finite depth, including the mass asymmetry degree of freedom
3
). 

A two-center shell model Hamiltonian corresponding to these 

24) shapes has been constructed by Albrecht , who also proposed 

a convenient parameterization of Lawrence's family. Both have 
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been applied in the present calculations. Only the major 

properties will be recalled here1 full details can be found in 
26) ref. • 

6.1 SHAPE PARAMETERIZATION 

Figure 4 illustrates the family of shapes in terms of the 

separation (or elongation) parameter s and the constriction (or 

necking~in) parameter c. In cylindrical coordinates, the surface 

of the drop is given by 

J., {c) 
~ f 1 

L c{2-c) 

r U/ 

l c ~ 7 
( 32) 

The factor f\(s 1c) takes care of volume conservation under 

de for rna tion. For small values of 5 and c , Lawrence shapes are 

similar to Nilsson shapes with parameters £ and ft. In the pure 

LDM model, the main fission direction (LDM valley) is given by 

s~c. The corresponding liquid drop potential energy surface for 

a superheavy nucleus is shown in Fig. 5. 

6.2 SINGLE-PARTICLE HAMILTONIAN 

In cylinar ical coordinates f/(:: , our single-particle 

potential is given by 

( 33) 
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The deformation dependent auxiliary quantities Wv{s,c)) rcs,c) v 

~{r; 1 c)) "rJ5 1c) and the constant \!, are defined in ref. 
26

), where 

also illustrations of the potential may be found. For C=O, our 

V is a spherical Nilsson oscillator potential (£-degree of 

freedom). Necking-in begins at c=1. For each deformation, all 

equipotential surfaces have Lawrence shapes. 

The full s.p. Hamiltonian is 

. s 
'V 

( 34) 

2 
It includes a Thomas-type spin-orbit term and an }-correction 

term With Strength COefficientS )<_(G) and r{c). 

I! Sp 
All numerical parameters n as well as the LDM constants 

and the strength and range of the pairing interaction are the 

same as in ref. 
26

). We assume here that the pairing strength 

~ is proportional to the nuclear surface area. The fission 

barriers of superheavy elements which result from this choice, 

in the case T-oo, J::.O are those of the more pessimistic estimate 

of Gustafsson 27 ). 



7. Results and discussion 

We have applied the model described above to the following 

superheavy systems 

2:JJ' J1l 
t1 ?4- I ' 

The first three systems were selected because the indicated 

heavy-ion reactions have been studied experimentally
28

) at 

various bombarding energies Ec~· From the measured complete 

fusion cross sect ions \i(.F (E. c.,) , angular momenta Lcr:. {Ec 11 ) were 

derived using the sharp cut-off model, where 0Cr-;;;. 111\2. ( e (f'. t 1) 2. 

The experimental icr:- depends on entrance channel effects13 ) 

( 3 5) 

and includes particle evaporation and fission processes occurring 

where the pro ctile has transferred its full momentum. Since 

we do not know at present which fraction of ~,::. refers to true 

compound processes, it would be rather meaningless to compare 

these (._ values to our Ic.,. given below. It is not even clear 

whether flcF(EcY¥1) should be larger than lc" at the corresponding 

compound nucleus excitation energy £*. This is because due to 

the reaction dynamics, the compound stage might not be reached, 

although it could be able to tolerate more angular momentum than 

offered by fer-· In the experiments quoted, the bombarding ener

gies were about 50 ... 200 MeV above the Coulomb barrier. From this 

one can estimate 29 ) that the maximum temperature varies 

between 1 and 2.5 MeV. 
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Th 298 114 . ·~ ~ h b . e system 1s cons1uereu ere ecause 1t has been 

predicted by various author 
2

) to be the superheavy nucleus 

most stable against fission. It is less neutron deficient than 

the other three systems and therefore it can probably not be 

reached directly in a fusion reaction. The dependence of its 

barrier on angular momentum has been studied before in re 6, 8) 

7.1. ENTROPY, SHELL CORRECTIONS, AND MOMENTS OF INERTIA 

As already indicated in Fig. 1, the difference between 

isothermal and isentopic processes is most pronounced for 

moderate temperatures, T~OSHtV. Since the liquid drop contri~ 

bution to the entropy is a smooth function of deformation, this 

effect is caused by the shell correction to the entropy. From 

Fig. 6, it can be seen that for the system 
292

118 at this very 

temperature the correction is negative for small deformations 

( S ~ -0.'2 . ... + 0. 'L ) and positive large deformations ( s;;:. 0.:? ) • 

This comes from the fact that the magic nucleus 292 118 at 

sphericity has a low-level density above the Fermi energy, 

whereas at large deformation deformed shells come into play and 

generate a large level-density about the Fermi energy. The shell 

correction to the entropy vanishes for the cold nucleus (entropy 

is zero) and also for higher temperatures ( TZ 2. MeY) , as soon as 

the range of the temperature-smeared out Fermi~surface becomes 

comparable to the range of the Strutinsky averaging procedure. 

The same e ect of the level density is observed in the 

shell correction to the energy and to the free energy, Fig. 7, 

with the exception that these shell corrections need not vanish 

at O. There exists, however, a well-pronounced difference 



~26~ 

between ~E(T) and SF(T), namely that at small (large) deformation 

~f is increasing (decreasing) monotonically with temperature 

rather than having a minimum (maximum) as does &E. According to 

eq. ( 21) the extrema in bf here are cancelled by the term - T 65 

to give a smooth dependence of 6F on I. For non magic nuclei, 

again the level density above the Fermi~surface determines the 

behaviour of the shell corrections with respect to temperature 

and deformation. 

The shell effects of the entropy create local temperature 

extrema for the isentropically deforming nuclear system. At 

deformations which correspond to potential minima (maxima) the 

temperature exhibits maxima (minima), cf. Fig. 8. In addition, 

the increase of surface energy during deformation causes a slight 

cooling of the isentropic liquid drop, cf. eq. (29). As will be 

shown below, this cooling is of the order of 15% at the second 

barrier and enhances the isentropic barrier heights. 

The drastic dependence of the moment of inertia on 

deformation and temperature can be seen in the contour plot of 

Fig. 9. Here it is interesting to note for which kind of shapes 

the moment of inertia becomes maximal. For the hot nucleus where 

shell effects are already washed out, these are long ellipsoidal 

shapes just as for the classical drop. In the cold nucleus the 

shell effects give rise to large moments of inertia corresponding 

to compact cylindrical shapes. This gives rise to a shift of 

the position of the fission barr r and, consequently, to a 

different fission path for the rotating nucleus as compared to 

the former case. 



7.2. EXCITED, NONROTATING SYSTEMS 

The influence of temperature on the potential energy 

surface for isothermal and isentropic processes can be seen in 

the contour plots, Figs. 10, 11. Three features can be observed. 

First, for increasing temperatures, the isothermal and isentropic 

barriers move towards more compact shapes. This results mostly 

from the behaviour of the moments of inertia as discussed above. 

Secondly, the isothermal barriers are in general lower than the 

isentropic ones because the contribution of the entropy to the 

energy partly cancels the shell effects and, also, because the 

corresponding LDM energies are lower. As a consequence, the 

isentropic barr rs do not necessarily decrease monotonically 

with temperature as the isothermal ones do. This trend can be 

f 
270 10 . f . 2 h f seen or 1 1n the lower part o F1g. 1 , where t e de or-

270 
mation energy along the fission path is shown, and for 110 

and 
278

110 in Table 2. 

The resulting barrier heights and depths of the second 

minima are listed in Table 2. In order to compare our results 

with those of other groups, we also include in this table barrier 

heights obtained if pairing is omitted (lower lines). Generally, 

barriers are lower when pairing is included because it acts like 

a temperature in smearing out the occupation numbers about the 

Fermi level and thus attenuates the shell correction. Our result 

for the barrier height of 
298 114 omitting pairing, for 

instance, is somewhat lower than the value 12.1 MeV of Andersson 

et al. 8 ) who used a Nilsson model, and with pairing included 

it is much lower than the value 8.5 MeV of Mustafa and Kumar
6
). 
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The table gives only barrier heights for temperatures up to 1.5 

MeV. Apart from the system 298 114 which still has a small 

barrier at T~2N~V, no barriers were found in the other systems 

under consideration for such high temperatures. 

7.3. ROTATING, COLD SYSTEMS 

A temperature of about 0.6 MeV causes pairing to break 

down, cf. Fig. 2. Hence, in discussing the behaviour of rotating 

but cold nuclear systems, pairing plays an essential role. In 

particular, the Coriolis antipairing effect is most pronounced 

in cold nuclei, and barrier heights depend strongly on the degree 

of pairing. This is illustrated in Fig. 13, where the barrier 

heights of 270110 are plotted if pairing is not admitted and 

if CAP ef cts are taken into account as described in Appendix 

A.l. It can be seen that the CAP effect essentially lowers the 

barriers compared to the case 6~0. Both curves coincide om 

1~6oh on, which means that all pairs are broken at all deforma~ 

tions. For higher angular momenta, the barrier height is 

decreasing monotonically until the critical angular momentum is 

reached. The latter is defined as the value of 1 where the 

barr r height is approximately 0.2 MeV. 

The resulting large critical angular momenta for the cold 

systems listed in the first column of Table 3 are unrealistic 

because such compound nuclei without excitation energy cannot be 

produced in a heavy-ion reaction. The system 298 114, for 

instance, can carry an angular momentum of 181ft). This is of the 

same order as the result of the calculations of Andersson et 

a1. 8) for the same system but with inclusion of triaxial 
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shapes. They obtained a barrier height of 1 MeV for 1.""100, thus 

Ic.,.::> 100 The value Ic"' :c32. of Mustafa and Kumar
6
), on the 

other hand, is not compatible with either calculation. 

7.4. EXCITED, ROTATING SYSTEMS 

The interesting temperature range in heavy-ion collisions 

well above the Coulomb barrier is 1MeV£Tf2.5"HeV. For these 

temperatures (or Gp in the isentropic case) , the pairing force 

and, hence, also the CAP effect is ineffective. At T? 1.["heV 

the crit al angular momenta are substantially lower than the 

respective values for the cold nuclei. They are comparable to the 

results obtained with the pure rotating liquid drop model at T~O; 

cf. the entries in the last column of Table 3. Furthermore, 

since isentropic barriers are higher than isothermal ones, also 

isentropic 1c1 -values are larger than isothermal ones. 

A direct comparison of our static critical angular 

momenta with the experiment is not possible because fusion cross 

sections and, hence, experimental critical angular momenta depend 

on the dynamics of the entrance channel; for reviews on this 

. 28 30 31) 28) . 
subJect cf. refs. ' ' Present analyses w1 th great 

success make use of rotating liquid drop model fission barriers. 

Although for the excitation energies under consideration shell 

effects are diminished considerably by excitation and rotation, 

however, there remain corrections to the rotating liquid drop 

model from moments of inertia, temperature and entropy. 
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7.5. SUMMARY OF RESULTS 

By use of a single-partie model with excitation and 

Strutinsky's renormalization procedure to the liquid drop model, 

we calculated shell corrections and cranking model moments of 

inertia. With help of these, the potential energy surfaces for 

the isentropic process and the ee energy surfaces for the 

isothermal process have been studied in dependence on excitation 

(temperature) and rotation (angular momentum). 

As results we first note that the physically more 

appropriate isentropic process, where no heat energy can be 

delivered to nor extracted from the system, always gives larger 

fission barriers because the energy shell correction is larger 

than the free energy shell correction and also because the asso

ciated LDM energy is higher for this process. Secondly, pairing 

is only important for temperatures below about 0.6 MeV if there 

is no rotation, or for angular momenta smaller than bot , if there 

is no excitation. Already moderate excitation and rotation 

together cause the breakdown of pairing and of the Coriolis 

antipairing effect. 

Further, the heavy systems of masses liO!:-A £322 under 

consideration can tolerate surprisingly large angular momenta of 

the order of r,,. ;:;:_ 14-o . .. 2-2.0 when they are cold because then 

the shell effects are large. Unfortunately, this low-excitation 

regime is unaccessible for the production of superheavy nuclei. 

On the other hand, for temperatures typical of heavy-ion 

reactions well above the Coulomnb barrier, shell effects are 

greatly reduced, resulting in critical angular momenta of the 

order of the rotating liquid drop model results. 



Appendices 

A.l. THE CORIOLIS ANTIPAIRING EFFECT 

At higher angular momenta the Coriolis force tends to 

break Cooper pairs, which results in a strong dependence of the 

moment of inertia e111
(tj(I)) on I via /j(I). Krumlinde 32 ) 

suggested to treat this Coriolis antipairing effect by minimizing 

the effective potential energy, eq. ( 2) , for each de for rna tion 

with respect to the pairing gaps 6~, ~F· Since this can only be 

achieved at the expense of immense computer time, we approximated 

eq. (1) using two interpolation parameters Dr. (for neutrons) and 

Op (for protons). For each kind of nucleons, S interpolates 

linearly between the cases /j:;Q (no pairing) and the .6 cor re-

spending to J;;;.O (maximum pairing). This interpolation is carried 

out for each deformation, temperature and angular momentu~ 

separately. Thus we have 

( Al) 

We now suppress the arguments d~,T for brevity but indicate the 

dependence on /j explicitly. For the total energy in eq. (2), we 

then use the following interpolation formula~ 



1 bn ~ S'l' r { ~"- ~f I + _ .. ___________ ····--· . ~---
e, (IJJr-:.o))+ ep (!Jp~o) 2. 

+ ti]icr)J < 9/ ll/Il) . _§,+ 'i)r - ~~" -lir J . (A2) 

This expression is minimized with respect too~, Of• The 

procedure for F analogous. 

A.2. SOMMERFELD EXPANSION 
fV 

The expression for the particle number N and the smoothed 
A/ 

internal energy E in the Strutinsky model at higher temperatures 

read [cf. eqs. (17 ,18)] 

( A3) 
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(A4) 

respectively, where u::;;,(£~(;_.£.)/'f and 

(AS) 

is the sixth order curvature correction. 

As usual, f, ~, T and Et denote the smearing width, 

smoothed Fermi energy, temperature, and single particle states, 

respectively. While these integrals can be solved in closed form 

for T =-0, even a numerical computation for T'>O is tedious. This 
fV 

is because the implicit evaluation of ~ necessary for particle 
IV 

number conservation, N~W, requires a high accuracy in eqs. (A3,4) 

0 ~5 f f 1-'l . 33) of about l • There .ore the Sommer e. u expans 10n 

(A6) 

has been employed. If )(::.£/T and 1;'
0

.::. ~ //, this expansion holds 
tV 

for TLc. (\ in which case also the lower limit of the integral can 

be extended to~~. The final results are 

IV 

N::. 
(A 7) 
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(A8) 

where 

(A9) 

Here )(::. ('i(-E~JIS: and J?-r}c (-x)~ 1+ $--4 6) is the complementary 

error function with negative argument. 
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Table 1 

spin-orbit included no yes yes 

no no , J!_'- included 

! i------------------+---------------·----·-··-·····--

yes 

i 

T in MeV 

0 >Q 0.63 0.66 0.62 

2 0 0.93 1. 00 1. 35 

Effect of momentum-dependent terms in the single-particle 

Hamiltonian on the cranking moment of inertia. The example is 

292
118 with deformation s~c~0.6, which corresponds roughly to 

the second barrier. The entries give the cranking model perpen-

dicular moments of inertia in units of the corresponding rigid 

body moment. 
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~~~~2 Temperature dependence of barrier heights for I = 0. 

T in MeV 

0 0.5 1.0 1.5 

System I II I II I II I II 

270110 
3.7 0 2.3 0 3.7 1.7 0 0 0.9 0.2 0 

~- - ~- -
7.2 0.5 5.7 0 

278110 
2.6 0.7 2.0 0 2.8 1.1 0 0 0.7 0 0 -- - --- -
6.4 0 4.7 0 

298114 
5.6 1.8 4.0 0 2.6 1.3 3 0.3 1.0 0.4 0.2 -- --
9.4 5.2 5.2 1.7 

292118 
5.4 1.8 4.0 0 2.4 1.2 0.5 0 0.6 0.2 -- -- --
8.6 3.5 5.2 1.7 

322128 
8.0 0 

13.8 0.3 

I: Height of maximum barrier in MeV with respect to the 

lowest minimum 

0 -

II: Depth of the second minimum in MeV with respect to the 

lowest barrier 

upper lines: Pairing included 

lower lines: Pairing omitted 

underlined values: Isentropic process 

other values are for isothermal process or T=O. 

0 

0 

0 

0 



3 Critical angular momenta for various temperatures and 
~~~-

the rotating liquid drop. 

Sys tern T=O 1 MeV 1.5 MeV 2 MeV RLDM 

270110 140 70 56 45 0 0 0 32 - - -
278110 152 65 54 40 0 0 0 38 - - -

298114 184 60 50 35 16 15 0 20 - - -
292118 220 70 60 30 20 0 0 0 - - -
322128 200 50 30 0 

The critical angular momenta are those values of I , where the 

barrier height is approximately 0.2 MeV. Values r isentropic 

processes are underlined, other entries refer to isothermal 

processes or T=O. The last column (RLDM) lists the cri cal 

angular momenta in the rotating liquid drop rnodel 1 ) for T=-0. 

: 
i 
i 
I 

i 

I 
I 
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Total nt py 

100 

s=0.8,c=005 --

spherical shape 

50 

0 
0 .32 .5 1. 

T [MeV] 

XBL 809-11586 

Fig. 1. Tot (proton and neutron) entropies of spherical and 

deformed 292118 nuclei versus temperature. The 

parameters correspond to a deformation beyond the 

second barrier, • Fig. 4. 
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1.0 

0.5 - s = 0.8 ....... - c = 0.5 

00 0.2 0.4 0.6 
T Jn MeV 

XBL 809-11587 

Fig. 2. The neutron pairing gap of the compound nucleus 

292 
118 versus temperature. The parameters indicated 

correspond to a deformation beyond the second barrier, 

cf. Fig. 4. 
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0 
e.fM 

300 eRB 
.!. 

200 eCM 
II 

N 

<D 100 en 
s = 0.6 
c = 0.6 

00 0.5 1.0 1.5 2.0 
T in MeV 

XBL 809-11588 

Fig. 3. Cranking and rigid body tot (protons and neutrons) 

moments of inertia perpendicular and parallel to the 

axis of symmetry for the compound nucleus 292118 

versus temperature. The parameters ind ted 

correspond roughly to the formation of the second 

barr r at a temperature of T = 1 MeV. 
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2.0 

1.5 

1.0 

0.5 

0 

-1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 
s---
XBL 809-11589 

Fig. 4. Examples of shapes contained in the parameterization, 

eq. (32). 
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3.6 

3.2 -240( 

2.8 '<<o 
'-

2.4 

2.0 

1. 6 

1.2 

0.8 

~ 0.4 

0 

-0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

XBL 809-11590 

F • 5. Liquid drop potent 1 energy surface in the 

parameterization of eq. (32) r the cold ( T"'-0) 

compound nucleus 
292

118. This heavy nucleus does not 

have a liquid drop minimum nor a saddle point. Contour 

energies are in MeV. 
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1.5 .0 
T in MeV 

XBL 809-11591 

Fig. 6. Shell correction to the entropy versus temperature, 

o.S(a~lT) , the neutrons of the system 292118 at 

various deformations. 
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! 1.0 I 1 0 

0 
() 

0.8 0.8 

0.6 0.6 

0.4 o9s 0.4 

0.2 OJ 
0 ~~ 

0 

-0.2 0 0.2 0.4 0.6 0.8 -0.2 0 0.2 0.4 0.6 0.8 
s- s--

XBL 809-11593 

Fig. 8. Contour plots of the temperature in MeV for the 

isentropic process and the systems indicated. The 

constant entropy corresponds to a spher al temperature 

of 1 MeV. 
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Fig. 7. Shell correct to the energy (left figure) to 

the free energy (right figure) versus temperature for 

292 
the neutrons of the system 118. 
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0.6 

0.4 

0.2 

0 

0.6 0.8 

s-~ 

\ 
~ 
\ 

-0.2 0 

T=2MeV 
I I l 1 l I I 

0.2 0.4 0.6 0.8 

XBL 809-11594 

Fig. 9. Contour plot of the perpendicular moment of inertia, 
t 

e~M (d~.jl T) in units of ~ /M&-V for T-:.0 (left figure) and 

2. HeV (right figure) and the system indicated. 
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s-

h1MeV isothermal 

-0.2 0 0.2 0.4 0.6 0.8 
s-~ 

t LO 
u 

0.8 

0.4 

0,2 

T ~ OMeV 

-~ 0 ~ W M M 
s-

-0.2 0 0.2 0.4 0.6 0.8 
s-

Tsph" 1 MeV isentropic 

-0,2 0 0.2 0,4 0,6 0,8 
S--

XBL 809-11595 

Fig. 10. Contour plots of the free energy (isothermal process) 

or of the energy (isentropic process) for vanishing 

angular momentum. For r~o the energy is equal to the 

free energy. 
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T = 0 MeV 

T = 1 MeV isoihermol 

Tsph = 1M eV isentropic 

::r \1J~,)\ f. 
-0.2 0 0.2 0., 0.6 0.8 

s-----

XBL 809-11596 

Fig. 11. Same as Fig. 10 but for very heavy systems. 
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0 
I =0 

XBL 809-11597 

Fig. 12. Deformation energies along the fission path plotted 

against the elongation deformation coordinate for 

various angular momenta. Phase transitions through the 

CAP effect are taken into account. 
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120 
ular mom ntum 

XBL 809-11599 

Fig. 13. Dependence of barrier height on angular momentum r 

270 
the cold system 110. Open triangles refer to 

calculations with pairing and full triangles to results 

without or vanishing pairing. 




